Localization of functional polypeptides in bacterial inclusion bodies.

نویسندگان

  • Elena García-Fruitós
  • Anna Arís
  • Antonio Villaverde
چکیده

Bacterial inclusion bodies, while showing intriguing amyloid-like features, such as a beta-sheet-based intermolecular organization, binding to amyloid-tropic dyes, and origin in a sequence-selective deposition process, hold an important amount of native-like secondary structure and significant amounts of functional polypeptides. The aggregation mechanics supporting the occurrence of both misfolded and properly folded protein is controversial. Single polypeptide chains might contain both misfolded stretches driving aggregation and properly folded protein domains that, if embracing the active site, would account for the biological activities displayed by inclusion bodies. Alternatively, soluble, functional polypeptides could be surface adsorbed by interactions weaker than those driving the formation of the intermolecular beta-sheet architecture. To explore whether the fraction of properly folded active protein is a natural component or rather a mere contaminant of these aggregates, we have explored their localization by image analysis of inclusion bodies formed by green fluorescent protein. Since the fluorescence distribution is not homogeneous and the core of inclusion bodies is particularly rich in active protein forms, such protein species cannot be passively trapped components and their occurrence might be linked to the reconstruction dynamics steadily endured in vivo by such bacterial aggregates. Intriguingly, even functional protein species in inclusion bodies are not excluded from the interface with the solvent, probably because of the porous structure of these particular protein aggregates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Localization of chaperones DnaK and GroEL in bacterial inclusion bodies.

By immunostaining and transmission electron microscopy, chaperones DnaK and GroEL have been identified at the solvent-exposed surface of bacterial inclusion bodies and entrapped within these aggregates, respectively. Functional implications of this distinct localization are discussed in the context of Escherichia coli protein quality control.

متن کامل

Construction and deconstruction of bacterial inclusion bodies.

Bacterial inclusion bodies (IBs) are refractile aggregates of protease-resistant misfolded protein that often occur in recombinant bacteria upon gratuitous overexpression of cloned genes. In biotechnology, the formation of IBs represents a main obstacle for protein production since even favouring high protein yields, the in vitro recovery of functional protein from insoluble deposits depends on...

متن کامل

The chaperone DnaK controls the fractioning of functional protein between soluble and insoluble cell fractions in inclusion body-forming cells

BACKGROUND The molecular mechanics of inclusion body formation is still far from being completely understood, specially regarding the occurrence of properly folded, protein species that exhibit natural biological activities. We have here comparatively explored thermally promoted, in vivo protein aggregation and the formation of bacterial inclusion bodies, from both structural and functional sid...

متن کامل

Protein aggregation as bacterial inclusion bodies is reversible.

Inclusion bodies are refractile, intracellular protein aggregates usually observed in bacteria upon targeted gene overexpression. Since their occurrence has a major economical impact in protein production bio-processes, in vitro refolding strategies are under continuous exploration. In this work, we prove spontaneous in vivo release of both beta-galactosidase and P22 tailspike polypeptides from...

متن کامل

Bacterial Overexpression of the Human Interleukin-2 in Insoluble Form via the pET Trx Fusion System

Selection of a system for successful recombinant protein production is important. The aim of this study wasto produce high levels of human interleukin-2 (hIL-2) in soluble form. To this end, the pET32a vector inEscherichia coli BL21 (DE3) was used as an expression system, since it was previously used for the productionof mouse IL-2 in soluble form. The results indicated that c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 73 1  شماره 

صفحات  -

تاریخ انتشار 2007